42 [9].-Thomas R. Parkin \& Daniel Shanks, Three Tables Concerning the Parity of the Partition Numbers $p(n)$ for $n<2040000$, Aerospace Corporation, Los Angeles, California, 1967, 398 pages of computer output bound in stiff covers and deposited in the UMT file.

Three tables computed for our paper [1] are here deposited in the UMT file. Table 1 (238 pages) extends the octal number $m / 2$ of [1, Table 1] to $n=2039999$ and thereby contains the parity of $p(n)$ to that limit in $n$.

Table 2 ( 56 pages) includes Tables 2 and 4 of [1] and lists the octuple counts from 0 to $n$ with

$$
n=r \cdot 10^{s}-1
$$

for $r=1(1) 9, s=1(1) 4$ and $r=1(1) 20, s=5$. As described in [1], the $k$-tuple counts, $k=2(1) 7$, can be determined from these.

Table 3 ( 104 pages) concerns the equinumerosity of odd and even $p(n)$. It has finer detail than the Table 7 of [1] in that it lists every $n=1000(1000) 2040000$ together with every $n$ where "Odds" = "Evens". It also includes max|Odds-Evens| in each interval here.
D. S.

1. THOMAS R. PARKIN \& DANIEL SHANKS, "On the distribution of parity in the partition function," Math. Comp., v. 21, 1967, pp. 466-480.
43 [9].-L. Pinzur, Tables of Dedekind Sums, Department of Math., University of Illinois, Urbana, Ill., 1975, 527 computer sheets deposited in the UMT file.

If $x$ is any real number, put

$$
((x))= \begin{cases}0, & x \text { an integer } \\ x-[x]-1 / 2, & \text { otherwise }\end{cases}
$$

The ordinary Dedekind sum is defined for any integer $h$ and any positive integer $k$ by

$$
s(h, k)=\sum_{n \bmod k}((n / k))((n h / k)) .
$$

It is easily shown [1] that
(a) $s(q h, q k)=s(h, k)$, for all positive integers $q$,
(b) $s(-h, k)=-s(h, k)$,
(c) $s\left(h_{1}, k\right)=s\left(h_{2}, k\right)$, whenever $h_{1} \equiv h_{2} \bmod k$.

Hence, for a given positive integer $k$, it is only necessary to compute $s(h, k)$ for those $h$ such that

$$
\begin{equation*}
1 \leqslant h \leqslant k / 2, \quad(h, k)=1 \tag{1}
\end{equation*}
$$

The value of $s(h, k)$ is a rational number whose denominator (when in lowest terms) divides $6 k$ [1]. The table consists of the integers $6 k s(h, k)$ for $k=3(1) 1000$. The computation was done by repeated use of the following reciprocity relation for the Dedekind sums:

$$
s(h, k)+s(k, h)=-\frac{1}{4}+\frac{1}{12}\left(\frac{h}{k}+\frac{k}{h}+\frac{1}{h k}\right) .
$$

This relation and properties (b) and (c) above reduce the given Dedekind sum to an expression involving a new Dedekind sum with a smaller second variable. This process continues until the second variable equals 1 or 2 , at which point it stops since $s(h, 1)=$ $s(h, 2)=0$ for all positive integers $h$. For a given integer $k$, this algorithm takes $O(\log k)$ steps.

